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energy use grows with economic development

energy demand and GDP per capita (1980-2004)
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annual primary energy demand 1971-2003
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growing energy demand is projected

Global Energy Demand Growth by Sector (197 1-2030)
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BAU projection of primary energy sources
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substantial global fossil resources
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6bn of us want mobility

“There is no fuel like an old fuel...”
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oll supply and cost curve

Availabllity of off resources as a function of economic price
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A Future: ~ 3.5 Trillion bbls
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@ 3 Largets Energy Markets
(N.America + Europe + Asia Pacific)
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Crucial facts about CO, science
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Crucial facts about CO, science

Emissions Concentration
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Crucial facts about CO, science

Emissions Concentration
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Crucial facts about CO, science

Emissions Concentration
700

550 /

o
EY
i
Lo}
"
[=]
i

=
28]
i

=t
L=]
i

Fossil fuel emissions (GtC/y)
o
Atmospheric CO; concentration (ppm)
S
[

2004
2054
1]
0
=]
I
2004
2054

1950 2000 2050 2100 2150 1950 2000 2050 2100 2150
Year Year



Fossil fuel emissions (GtC/y)

Crucial facts about CO, science
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soclal barriers to meaningful emissions

reductions




soclal barriers to meaningful emissions

reductions

« Climate threat is intangible and diffuse; can be obscured
by natural variability



soclal barriers to meaningful emissions

reductions

« Climate threat is intangible and diffuse; can be obscured
by natural variability

- contrast ozone, air pollution

EERECOERCCOmERCC]

1M TYR 300 B BD T N0 W W0 TR #3430 400 M 0



soclal barriers to meaningful emissions

reductions

« Climate threat is intangible and diffuse; can be obscured
by natural variability

- contrast ozone, air pollution

« Energy is at the heart of economic activity
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soclal barriers to meaningful emissions

reductions

Climate threat is intangible and diffuse; can be obscured
by natural variability

- contrast ozone, air pollution
Energy is at the heart of economic activity

CO, timescales are poorly matched to the political
process

-~ Buildup and lifetime are centennial scale
- Energy infrastructure takes decades to replace

-~ Power plants being planned now will be emitting in
2050

- Autos last 20 years; buildings 100 years

- Political cycle is ~6 years; news cycle ~1 day
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soclal barriers to meaningful emissions

reductions

« Climate threat is intangible and diffuse; can be obscured
by natural variability

- contrast ozone, air pollution

+ Energy is at the heart of economic activity )
by KNMI/ESA

«  CQ, timescales are poorly matched to the political 19-09-02
process

-~ Buildup and lifetime are centennial scale
- Energy infrastructure takes decades to replace

-~ Power plants being planned now will be emitting in
2050

- Autos last 20 years; buildings 100 years
- Political cycle is ~6 years; news cycle ~1 day
« There will be inevitable distractions

- afew years of cooling
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- economic downturns



soclal barriers to meaningful emissions

reductions

Climate threat is intangible and diffuse; can be obscured
by natural variability

- contrast ozone, air pollution

Energy is at the heart of economic activity ) .

: o SRS B KNMI/ESA
CO, timescales are poorly matched to the political 19-09-02
process

-~ Buildup and lifetime are centennial scale
- Energy infrastructure takes decades to replace

-~ Power plants being planned now will be emitting in
2050

- Autos last 20 years; buildings 100 years
- Political cycle is ~6 years; news cycle ~1 day
There will be inevitable distractions

- afew years of cooling

ws ahwle

- economic downturns e -y~

: EERECOORCCOmMERCD

- unforeseen expenses (e.g., Iraq, tsunamis, ...) <100 TYE 308 K00 BEO T 00 338 M0 3T 458 436 440 47 600 07
Emissions, economics, and the priority of the threat vary

greatly around the world



CO; emissions per capita {tCQ)
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Implications of emissions heterogeneities

215t Century emissions from the Developing World (DW) will be more important than those from
the Industrialized World (I\W)

- DW emissions growing at 2.8% vs W growing at 1.2%

- DW will surpass IW during 2015 - 2025 .
E

"1
Sobering facts

- When DW ~ W, each 10% reduction in VW emissions is compensated by < 4 years of
DW growth

- If China's (or India’s) per capita emissions were those of Japan, global emissions
would be 40% higher

Reducing emissions is an enormous, complex challenge; technology development
will play a central role



greenhouse gas emissions in 2000 by source

ENERGY
EMISSIONS Industry (14%)
Other energy
Power .
(24%) / related (5%)
Waste (3%)
Transport Agriculture
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e EMISSIONS
" Land use

(18%)

Total emissions in 2000: 42 GtCO2e.

Energy emissions are mostly CO, (some non-CO5 in industry and other energy related).
Mon-energy emissions are CO, (land use) and non-CO, (agriculture and waste).

source: Stern Heview, from data drawn from World Resources Institute Climate Analysis Indicatars Toaol (CAIT) on-line database version 3.0



historical and projected GHG emissions by

sector
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Distinguishing aspects of energy technologies

- Scale
- Large infrastructure, amounts of material, numbers of units
- Requires large capital, leverage of existing infrastructure

= Ubiquity
— There are many players with sometimes divergent interests
- Consumers, suppliers, governments, NGOs, ...

« Longevity

- Lifetimes of large equipment and/or interoperability imply slow
changes

* |Incumbency
- New energy technologies must compete on cost

- May not provide any qualitatively new service to the end-user



some energy technologies

Primary Energy
Sources:

Light Crude
*Heavy Oil
*Tar Sands

Wet gas
+CBM
*Tight gas
*Nuclear
«Coal
«Solar
Wind
*Biomass
+Hydro

*Geothermal




some energy technologies

Primary Energy
Sources:

Light Crude
*Heavy Oil
*Tar Sands

Wet gas
+CBM
*Tight gas
*Nuclear
«Coal
«Solar
Wind
*Biomass
+Hydro

*Geothermal

There are no “silver bullets”
But some have a larger calibre than others !




evaluating energy technology options

« Current technology status and plausible technical headroom

+ Budgets for the three E's:
- Economic {cost relative to other options)
- Energy (output how many times greater than input)

- Emissions (pollution and COZ2; operations and capital)
+ Materiality (at least 1TW = 5% of 2050 BAU energy demand)
+ Other costs - reliability, intermittency etc.

+ Social and political acceptability



evaluating energy technology options

« Current technology status and plausible technical headroom

+ Budgets for the three E's:
- Economic {cost relative to other options)
- Energy (output how many times greater than input)

- Emissions (pollution and COZ2; operations and capital)

+ Materiality (at least 1TW = 5% of 2050 BAU energy demand)
+ Other costs - reliability, intermittency etc.

+ Social and political acceptability

we also must know what problem we are trying to solve



two key energy considerations

— security & climate
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Concern over Future
Availability of Qil and Gas

two key energy considerations

— security & climate
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the fungibility of carbon
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Concern over Future
Availability of Oil and Gas

evaluating power options
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electricity generation shares by fuel - 2004
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Impact of CO, cost on levelised Cost of

Electricity
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Cost of Electricity

Impact of CO, cost on levelised Cost of

Electricity
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Impact of CO, cost on levelised Cost of

Electricity
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Sowrce:. 1EA Technoiogy Perspeciives 2008, I£A WEC 2006 and BAH analysis



The (supply) research agenda

Fossil fuel technologies

Operation in the Artic, extreme
deepwater (>6000 ft)

Subsalt seismic and Controlled
Source ElectroMagnetics

Extreme pressures/temperatures
(10 km, 1000 atm, 200C)

Improved Qil Recovery/Mature
basin management

Heavy/shale/tarsand oil

- production, refining

Tight gas/Coal Bed Methane
Underground Coal Gasification

Conversion + sequestration for
power, fuels, chemicals

- Gasification, catalysts,
membranes

Alternatives, renewables, exotica
Energy-bio connection

- Advanced biofuels, conversion,
sequestration

Energy storage

- batteries, capacitors, flywheels,
phase change, H27?

Power transmission
Advanced photovoltaics
Methane hydrates

Next and (Next + 1) generation
fission

- Fission heat

Fusion (magnetic and inertial)



potential of demand side reduction

Low Energy Buildings

» Buildings represent 40-50% of final
energy consumption

» Technology exists to reduce energy
demand by at least 50%

» Challenges are consumer behaviour,
policy and business models

Urban Energy Systems

41 1
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]

« 75% of the world’'s population will be
urbanised by 2030

» Are there opportunities to integrate
and optimise energy use on a city
wide basis?
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efficiency is not the same as conservation

it is wholly a confusion of ideas to suppose that the economical use of fuels is
equivalent to a diminished consumption. —\W.S. Jevons, 1865

*  Instances
- Supply-limited situations
- US refrigerators

- US automobile fleet

US Autos (1990-2001)

Net Miles per Gallon:
- engine efficiency

+23.0%
- weight/performance -18.4%
Annual Miles Driven:

Annual Fuel Consumption:

United States Refrigerator Use v. Time

2,000 ]
1,800 +
1,500 4 .m_ﬁ
2
& 140 1 g
] Refriger ator E
gim" Size (cubic ft) "ﬁ-g
danl 3
2 Energy Use per Unit E
(KA Y e
400 1, ol Refrigerator Price § 4627 5
in 1983 %
m..
R N N N R R RS RES ERR
1947 1952 1957 1962 1967 1972 4977 1982 1987 1992 1997 A0



efficiency is not the same as conservation

it is wholly a confusion of ideas to suppose that the economical use of fuels is

equivalent to a diminished consumption. —\W.S. Jevons, 1865
United States Refrigerator Use v. Time

+  [nstances

— Supply-limited situations 1 "
g g
- US refrigerators Sl e :
g 120 4 Size (cubic ft) T* ‘E
— US automobile fleet gromy s
8 " \ -
2 e | Energy Use per Unit g
400 1 fetiivem) Refrigerator Price §4627 &
ol | in 1983 §
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US Autos (1990-2001)

Net Miles per Gallon: R0 3 ° Price and/or policy are the surest
- engine efficiency +23.0%

ways to induce conservation

- weight/performance -18.4% A : i :
* Either 1s politically difficult

Annual Miles Driven:
Annual Fuel Consumption:




per capita US electricity by state
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likely 30-year energy future

Hydrocarbons will continue to dominate transportation (high energy density)

— Conventional crude / heavy oils / biofuels / CTL and GTL ensure continuity of supply at
reasonable cost

— Vehicle efficiency can be at least doubled (hybrids, plug-in hybrids, HCCI, diesel)
- local pollution controllable at cost; CO; emissions now ~20% of the total
- Hydrogen in vehicles is a long way off, if it's there at all
= No production method simultaneously satisfies economy, security, emissions
= Technical and economic barriers to distribution / on-board storage / fuel cells

- Benefits are largely realizable by plausible evolution of existing technologies
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likely 30-year energy future

Hydrocarbons will continue to dominate transportation (high energy density)

— Conventional crude / heavy oils / biofuels / CTL and GTL ensure continuity of supply at
reasonable cost

— Vehicle efficiency can be at least doubled (hybrids, plug-in hybrids, HCCI, diesel)
- local pollution controllable at cost; CO; emissions now ~20% of the total
- Hydrogen in vehicles is a long way off, if it's there at all
= No production method simultaneously satisfies economy, security, emissions
= Technical and economic barriers to distribution / on-board storage / fuel cells
- Benefits are largely realizable by plausible evolution of existing technologies
Coal (security) and gas (cleanliness) will continue to dominate heat and power
— Capture and storage (H, power) practiced if CO, concern is to be addressed
— Nuclear (energy security, CO-) will be a fixed, if not growing, fraction of the mix
- Renewables will find some application but will remain a small fraction of the total
- Advanced solar a wildcard
Demand reduction will happen where economically effective or via policy

CO, emissions (and concentrations) continue to rise absent dramatic global action



necessary steps around the technology

« Technically informed, coherent, stable government policies
- Educated decision-makers and public
- Focus on the most material/lowest-cost measures
~ For short/mid-term technologies
- Avoid picking winners/losers
- Level playing field for all applicable technologies
- For longer-term technologies
- Support for pre-competitive research

- Hydrates, fusion, advanced [fission, PV, biofuels, ...]
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necessary steps around the technology

»  Technically informed, coherent, stable government policies
— Educated decision-makers and public
— Focus on the most material/lowest-cost measures
- For short/mid-term technologies
- Avoid picking winners/losers
- Level playing field for all applicable technologies
— For longer-term technologies
- Support for pre-competitive research
- Hydrates, fusion, advanced [fission, PV, biofuels, ...]
+  Business needs reasonable expectation of “price of carbon”

»  Universities/labs must recognize and act on importance of energy
research

= Technology and policy
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- Adaptation (will be happening anyway)
— Shifts in agricultural patterns
- Hardening of infrastructure
- Insulation, dams, seawalls, aqueducts, ...

- Shifts in population



What is Plan B for climate change?

*  The world should make its best effort to stabilize GHG concentrations
through conservation, decarbonization of the energy supply, and reducing
non-energy emissions

- But it is possible that levels deemed “safe” will be exceeded
»  The CO, will remain in the atmosphere for many centuries

*  The response beyond continued conservation and decarbonization would
depend upon how severe the impacts are

+ Adaptation (will be happening anyway)
— Shifts in agricultural patterns
— Hardening of infrastructure
= Insulation, dams, seawalls, aqueducts, ...
— Shifts in population
+  Geoengineering is a last resort if things get really bad
— Albedo modification (need only to go from 0.30 to 0.31)
- In space, in the atmosphere, at the surface
- Removal of GHGs from the atmosphere (probably biological)
= Annual natural carbon exchange with the atmosphere is ~200Gt
= Fossil fuel increment is currently ~6Gt
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